Physical Programming for Blind and Low Vision Children at Scale

Nicolas Villar
Microsoft Research
Redmond, WA
nvillar@microsoft.com

Cecily Morrison
Microsoft Research
Cambridge, UK
cecilym@microsoft.com

Daniel Cletheroe
Microsoft Research
Cambridge, UK
cecilym@microsoft.com

Tim Regan
Microsoft Research
Cambridge, UK
cecilym@microsoft.com

Anja Thieme
Microsoft Research
Cambridge, UK
cecilym@microsoft.com

Greg Saul
Microsoft Research
Cambridge, UK
cecilym@microsoft.com

ABSTRACT
There is a dearth of appropriate tools for young learners with mixed visual abilities to engage with computational learning. Addressing this gap, we present Project Torino, a physical programming language for teaching computational learning to children ages 7-11 regardless of level of vision. To create code, children connect and manipulate tactile objects to create music, audio stories, or poetry. Designed to be made and deployed at scale, Project Torino (along with a scheme of work) has been successfully used by 30 non-specialist teachers with 75 children across the UK over three months.
INTRODUCTION

Policy initiatives throughout the world are including programming, and computational learning more broadly [2], into education and national curricula. Addressing these initiatives, a range of specialist teaching tools have been created specifically to encourage the development of computational learning in school children [3]. Yet, the formalization of computational learning into schools and curricula makes more apparent the lack of appropriate tools for many children with disabilities [1].

While inclusive computing (see Sidebar for references) is a growing area of research, there remains a dearth of tools for teaching basic computational learning to young children with mixed visual abilities. Common languages used by their sighted peers, such as Scratch or Alice [9] are visual both in manipulating the code (e.g. drag and drop) and in the effect that the code has (e.g. animation). Existing physical programming languages also rely heavily on visual properties for: distinguishing pieces, connecting them correctly, and experiencing the outcome of the program.

Addressing this gap, Project Torino is a physical programming language for teaching computational learning to children ages 7 -11 regardless of level of vision (see Figure 1). To create code, children connect and manipulate tactile objects to create music, audio stories, or poetry. A scheme of work supports non-specialist teachers in delivering lessons with the Project Torino system. The design of the initial Project Torino prototype and early evaluations are reported in [5,8]. Multiple design iterations have resulted in a new, full-featured, manufacturable version of Project Torino that can be deployed at scale.

We have validated Project Torino with 75 children and 30 teachers situated across 24 localities in the UK for a full three-month academic term. This stands in strong contrast to other physical (or tangible) technologies that have been developed for teaching computational learning, for which empirical validation is rare [11]. Our findings showed that children were highly engaged and that teachers reported age- and ability-appropriate learning across the cohort.

PROJECT TORINO SYSTEM

A Project Torino kit is made up of three kinds of physical entities: one hub, 15 pods, and 12 plugs. These can be connected together in various ways to create programs.

Program Structure: Each pod represents an action to be executed sequentially when the program is run. In this latest version of the system, in addition to play, rest, and loop pods, there are also conditional (if then), and merge (end if) pods. Each pod has a number of connectors and cables that allow them to be plugged together to define the structure of the program. Pods plug into one of four connectors on the hub, which represents the logical starting point of the program, with each connection point representing the start of a thread. For example, Figure 2 shows a program with three concurrent threads. The first thread will play a single sound, and then will enter a loop that will repeat the action of playing a rest (silence) followed by a sound. A second thread will play three sounds in sequence. A third thread will play either a sound or a rest, depending on the outcome of a conditional statement.

Parameters and Values: Pods have knobs that represent configurable parameters, which can be rotated to specify the value of the parameter. Play pods have two knobs, one to specify the sound and
INCLUSIVE COMPUTING

Multisensory Feedback: Each physical entity was designed to be tactually and visually distinct. Each pod has different slopes and textures along with differentiated placement and number of dials. Dials each have a distinct texture and are colored to support those using visual information. This includes sighted children and teachers, as well as many blind and low vision children. We were careful to avoid disparity between tactual and visual information to ensure unimpeded interaction between those of different visual abilities. Manipulating knobs and plugs will result in an immediate audio response that indicates their value. This liveness was a specific design feature used to mimic the liveness of ILEs [7].

It was derived from our iterative design process that highlighted the ways children engaged with the world through their hands [5].

Reviewing Code: Students are expected to read and understand their code physically. They are particularly encouraged to follow their program as it executes, precisely touching or pointing to each pod as the program progresses. Research has noted that incorrect mental models can form when there is an inadequate understanding of the 'hidden' processes that are not directly observable from the program [6]. As a result, Torino followed the design construct to provide a persistent program overview of the program at all times. Combined with the physicality of the program, this design approach encourages computational learning through planning and prediction (algorithmic design [10]), and by following program execution (tracing and debugging [4]). Physical program-following has the added benefit of supporting shared attention between learners and can assist in debugging as the learner’s hand is already in position to fix the bug when spotted.

As students get ready to transition from Torino to a text-based language, they can listen to an audio description of the code, similarly to how a text-based program can be understood with a screen reader. Those with vision can view their code in software in an appropriate visual medium. We found teachers and adults often used the visual code (see Figure 2).

Low Threshold, High Ceiling: Project Torino was deliberately designed to accommodate a broad range of capabilities. Younger children (or those with additional learning needs) can start with very simple sequential programs, manipulating parameters manually. Complex concepts, such as nested looping, conditional logic and programmatic parameter manipulation can be introduced gradually as the learner progresses.

Implementation: Each pod contains a custom-designed circuit board, a microcontroller and connectors which power connected pods and enable them to communicate. Control messages, including type of pod and current state, are propagated through the network until they reach the Hub. From these messages a network graph is constructed, where a node is a pod and the edges are the connections between them.
The audio processing and visual output is done on a linked device, such as a tablet. The design is intended to be extensible, allowing for the introduction new pods and plugs to extend the program syntax.

Demonstration: This will be the first time that Torino is demonstrated at a scientific conference. Attendees will be able to explore all design features described as well as to build their own computer programs using Project Torino. We will further showcase companion experiences and the teaching guides that were developed, and discuss with the audience lessons learned in designing and deploying educational technology with, and for, children of different ages, visual and cognitive abilities.

ACKNOWLEDGMENTS

We would like to acknowledge all the learners and teachers who have participated in Project Torino, its design and evaluation. We would like to acknowledge the broader research team who participated in this project at different stages.

REFERENCES

